Example of solving RC circuit by Laplace transform

Consider a series RC circuit with a known time dependent input voltage $V(t)$. We will determine the charge Q on the capacitor as a function of time. The charge is governed by the following differential equation.

$$
V(t)=R \frac{d Q}{d t}+\frac{1}{C} Q
$$

Taking a Laplace transform of both sides we get

$$
\begin{aligned}
L\{V\}(s) & =R L\left\{\frac{d Q}{d t}\right\}(s)+\frac{1}{C} L\{Q\}(s) \\
& =R(-Q(0)+s L\{Q\}(s))+\frac{1}{C} L\{Q\}(s) \\
& =-R Q(0)+(R s+1 / C) L\{Q\}(s) \\
\Longrightarrow L\{Q\}(s) & =\frac{L\{V\}(s)+R Q(0)}{R s+1 / C}
\end{aligned}
$$

We can now recover the charge as a function of time by inverting the Laplace transform. Here is a table of the inverse Laplace transforms we will use in this example:

$Y(s)$	$L^{-1}\{Y\}(t)$
$\frac{1}{s-a}$	$e^{a t}$
$\frac{1}{s} e^{-a s}$	$u_{a}(t)$
$e^{-a s} Y(s)$	$u_{a}(t) L^{-1}\{Y\}(t-a)$

Case 1: Input voltage is zero

In this case,

$$
\begin{aligned}
L\{Q\}(s) & =\frac{R Q(0)}{R s+1 / C} \\
& =\frac{Q(0)}{s-(-1 / R C)}
\end{aligned}
$$

Now take an inverse Laplace transform. We use the first row of our inverse transform table with $a=-1 / R C$.

$$
\begin{aligned}
\Longrightarrow Q(t) & =Q(0) L^{-1}\left\{\frac{1}{s-(-1 / R C)}\right\} \\
& =Q(0) e^{-t / R C}
\end{aligned}
$$

Case 2: Input voltage is unit step function

Now let's suppose that the input voltage is a unit step function at some time τ. The Laplace transform of this step function is

$$
L\left\{u_{\tau}\right\}(s)=\frac{1}{s} e^{-\tau s}
$$

So our equation for the Laplace transform of Q becomes

$$
\begin{aligned}
L\{Q\}(s) & =\frac{e^{-\tau s} / s+R Q(0)}{R s+1 / C} \\
& =e^{-\tau s} \frac{1}{s(R s+1 / C)}+\frac{Q(0)}{s-(-1 / R C)}
\end{aligned}
$$

Notice that we already took the inverse transform of the second term when we solved the problem with $V(t)=0$. Take an inverse Laplace transform; use the $V(t)=0$ solution; then apply the third rule in our table:

$$
\begin{aligned}
Q(t) & =L^{-1}\left\{e^{-\tau s} \frac{1}{s(R s+1 / C)}\right\}+L^{-1}\left\{\frac{Q(0)}{s-(-1 / R C)}\right\} \\
& =L^{-1}\left\{e^{-\tau s} \frac{1}{s(R s+1 / C)}\right\}+Q(0) e^{(-1 / R C) t} \\
& =u_{\tau}(t) L^{-1}\left\{\frac{1}{s(R s+1 / C)}\right\}(t-\tau)+Q(0) e^{(-1 / R C) t}
\end{aligned}
$$

Almost done - do a partial fraction decomposition, then finish inverse transform using first rule in table.

$$
\begin{aligned}
\frac{1}{s(R s+1 / C)} & =\frac{C}{s}-\frac{C}{s-(-1 / R C)} \\
\Longrightarrow L^{-1}\left\{\frac{1}{s(R s+1 / C)}\right\} & =C L^{-1}\left\{\frac{1}{s}\right\}-C L^{-1}\left\{\frac{1}{s-(-1 / R C)}\right\} \\
& =C e^{0}-C e^{(-1 / R C) t} \\
& =C-C e^{-t / R C}
\end{aligned}
$$

Done. We have calculated the following formula for the charge as a function of time:

$$
\begin{aligned}
Q(t) & =u_{\tau}(t) L^{-1}\left\{\frac{1}{s(R s+1 / C)}\right\}(t-\tau)+Q(0) e^{(-1 / R C) t} \\
& =u_{\tau}(t)\left(C-C e^{-(t-\tau) / R C}\right)+Q(0) e^{-t / R C}
\end{aligned}
$$

Example of solving underdamped LRC circuit by Laplace transform

Now let's add an inductor, so that we have a series LRC circuit. Since we've been using L for the Laplace transform operator, we will denote the inductance of our circuit with a lowercase l. The voltage equation now reads

$$
V(t)=l \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{1}{C} Q
$$

Taking a Laplace transform, we have

$$
\begin{aligned}
L\{V\}(s) & =l\left(-Q^{\prime}(0)-s Q(0)+s^{2} L\{Q\}(s)\right)+R(-Q(0)+s L\{Q\}(s))+\frac{1}{C} L\{Q\}(s) \\
& =-(l s+R) Q(0)-l Q^{\prime}(0)+\left(l s^{2}+R s+1 / C\right) L\{Q\}(s)
\end{aligned}
$$

It's easy to solve for the Laplace transform of Q.

$$
L\{Q\}(s)=\frac{L\{V\}(s)+(s+R / l) Q(0)+Q^{\prime}(0)}{\left(s^{2}+R s / l+1 / l C\right)}
$$

Case 1: Input voltage is zero

We'll need a few more entries in our Laplace transform table:

$Y(s)$	$L^{-1}\{Y\}(t)$
$\frac{s-a}{(s-a)^{2}+b^{2}}$	$e^{a t} \cos (b t)$
$\frac{b}{(s-a)^{2}+b^{2}}$	$e^{a t} \sin (b t)$

We can "complete the square" to make express our function in terms of quantities appearing in our inverse Laplace transform table. Let's assume that $\frac{1}{l C}>\left(\frac{R}{2 l}\right)^{2}$ so that we can take a real number square root in the following calculation. In this case, the circuit is said to be underdamped; this condition is sometimes expressed as $\frac{R}{2} \sqrt{\frac{C}{l}}<1$ (these conditions are equivalent).

$$
\begin{aligned}
L\{Q\}(s) & =\frac{(s+R / l) Q(0)+Q^{\prime}(0)}{\left(s^{2}+R s / l+1 / l C\right)} \\
& =\frac{(s+R / l) Q(0)+Q^{\prime}(0)}{(s-R / 2 l)^{2}-(R / 2 l)^{2}+1 / l C} \\
& =Q(0) \frac{\left(s+\frac{R}{2 l}\right)}{\left(s-\frac{R}{2 l}\right)^{2}+\left(\sqrt{\frac{1}{l C}-\left(\frac{R}{2 l}\right)^{2}}\right)^{2}}+\frac{Q^{\prime}(0)+\frac{R}{2 l} Q(0)}{\sqrt{\frac{1}{l C}-\left(\frac{R}{2 l}\right)^{2}}} \frac{\sqrt{\frac{1}{l C}-\left(\frac{R}{2 l}\right)^{2}}}{\left(s-\frac{R}{2 l}\right)^{2}+\left(\sqrt{\frac{1}{l C}-\left(\frac{R}{2 l}\right)^{2}}\right)^{2}}
\end{aligned}
$$

Now take an inverse Laplace transorm.

$$
\begin{aligned}
Q(t) & =Q(0) L^{-1}\left\{\frac{s-A}{(s-A)^{2}+B^{2}}\right\}+\frac{Q^{\prime}(0)+\frac{R}{2 l} Q(0)}{\sqrt{\frac{1}{l C}-\left(\frac{R}{2 l}\right)^{2}}} L^{-1}\left\{\frac{B}{(s-A)^{2}+B^{2}}\right\} \\
& =Q(0) e^{A t} \cos (B t)+\frac{Q^{\prime}(0)+\frac{R}{2 l} Q(0)}{\sqrt{\frac{1}{l C}-\left(\frac{R}{2 l}\right)^{2}}} e^{A t} \sin (B t)
\end{aligned}
$$

Finally, we have calculated $Q(t)$.

$$
Q(t)=Q(0) e^{-(R / 2 l) t} \cos \left(t \sqrt{\frac{1}{l C}-\left(\frac{R}{2 l}\right)^{2}}\right)+\frac{Q^{\prime}(0)+\frac{R}{2 l} Q(0)}{\sqrt{\frac{1}{l C}-\left(\frac{R}{2 l}\right)^{2}}} e^{-(R / 2 l) t} \sin \left(t \sqrt{\frac{1}{l C}-\left(\frac{R}{2 l}\right)^{2}}\right)
$$

Case 1: Arbitrary input voltage

Recall the convolution formula for the inverse Laplace transform of a product. If $L\{f\}=F$ and $L\{g\}=G$, then

$$
L^{-1}\{F(s) G(s)\}=\left[u_{0}(t) f(t)\right] *\left[u_{0}(t) g(t)\right]
$$

The square parenthesis are just indicating order of operations. We solve using an inverse Laplace transform.

$$
\begin{aligned}
L\{Q\}(s) & =\frac{L\{V\}(s)+(s+R / l) Q(0)+Q^{\prime}(0)}{s^{2}+R s / l+1 / l C} \\
\Longrightarrow Q(t) & =L^{-1}\left\{L\{V\}(s) \frac{1}{s^{2}+R s / l+1 / l C}\right\}+L^{-1}\left\{\frac{(s+R / l) Q(0)+Q^{\prime}(0)}{s^{2}+R s / l+1 / l C}\right\} \\
& =\left[u_{0}(t) V(t)\right] *\left[u_{0}(t) L^{-1}\left\{\frac{1}{s^{2}+R s / l+1 / l C}\right\}\right]+L^{-1}\left\{\frac{(s+R / l) Q(0)+Q^{\prime}(0)}{s^{2}+R s / l+1 / l C}\right\}
\end{aligned}
$$

We already calculated the second inverse transform in this formula. The first one is done similarly; we get

$$
\begin{aligned}
& Q(t)=\left[u_{0}(t) V(t)\right] *\left[\frac{u_{0}(t)}{\sqrt{\frac{1}{l C}-\left(\frac{R}{2 l}\right)^{2}}} \sin \left(t \sqrt{\frac{1}{l C}-\left(\frac{R}{2 l}\right)^{2}}\right)\right] \\
&+Q(0) e^{-(R / 2 l) t} \cos \left(t \sqrt{\frac{1}{l C}-\left(\frac{R}{2 l}\right)^{2}}\right)+\frac{Q^{\prime}(0)+\frac{R}{2 l} Q(0)}{\sqrt{\frac{1}{l C}-\left(\frac{R}{2 l}\right)^{2}}} e^{-(R / 2 l)} \sin \left(t \sqrt{\frac{1}{l C}-\left(\frac{R}{2 l}\right)^{2}}\right)
\end{aligned}
$$

